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Abstract 

If N denotes the number of symmetry rotations of a 
crystal lattice, the number, n, of different rotations con- 
necting two orientations of this lattice is a multiple of 
N and a factor of 2N 2. Among these n equivalent 
rotations those with minimum angle are considered. 
Usually one, but in exceptional cases two or three, of 
these has its axis in the standard stereographic triangle 
and is called a disorientation. How equivalent disorien- 
tations are connected by symmetry rotations and how 
the number, n, of equivalent rotations can be found 
for any disorientation are shown. Additional conditions 
for selecting a unique reduced rotation among the 
disorientations are proposed. 

Introduction 

The relative orientations of neighbouring grains in a 
one-phase polycrystalline substance can be described 
by different rotations due to the point group of the 
grain. In determining experimentally (e.g. Chaudhari & 
Matthews, 1971) or theoretically (e.g. Warrington, 
1974) the frequency with which relative orientations of 
neighbouring grains occur, it is necessary to choose a 
unique one among the several equivalent descriptions of 
the relative orientation, which we shall call the reduced 
rotation. A reduced rotation, therefore, represents a 
class of equivalent rotations. The number, n, of 
equivalent rotations is not the same for each class. We 
show how n can be determined. This number is needed 
for investigations of special relative orientations of 
neighbouring grains of the type initiated by Warrington 
(1974, 1975; Warrington & Boon, 1975). 

The reduced rotations and the numbers of equivalent 
rotations have been determined for the cubic holo- 
hedry by Grimmer (1974). The present paper extends 
these results to all seven holohedries. It needs further 
extensions in two directions: the determination of 
'standard' distributions and the extension from holo- 
hedral to arbitrary point groups. 

The simplest assumption about the distribution of the 
relative orientations of neighbouring grains is that they 
are completely accidental, which gives rise to 'standard' 
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probability distributions to which measured frequency 
distributions can be compared. The standard pro- 
bability distribution of the disorientation angle has been 
determined for the cubic holohedry by Handscomb 
(1958) and by Mackenzie (1958) and for the remaining 
holohedries by Grimmer (1979). The standard pro- 
bability distribution of the rotation axis has been 
determined by Mackenzie (1964) for the cubic holo- 
hedry. 

The extension of the results in the present paper and 
in Grimmer (1979) from the holohedral to arbitrary 
point groups is in progress. 

The connection between our work and the well- 
known texture analysis of Bunge (1969) is as follows: 
Bunge investigates the orientation of the grains with 
respect to the piece of material in which they are 
contained. He, therefore, combines the point group of 
the grain with the symmetry of the piece. We are 
interested in the relative orientation of neighbouring 
grains and combine the point groups of the two 
neighbours. 

The notions of 'reduced rotation' and of 'disorien- 
tation' are closely connected. Every reduced rotation is 
a disorientation, i.e. a minimum angle rotation about an 
axis in a standard stereographic triangle. However, 
there are some disorientations that are not reduced 
rotations. Representing rotations by angles less than ~r 
in the usual way by points in the interior of a sphere 
with radius 7r, the disorientations form a closed 
connected subset f f  of the sphere. The set of reduced 
rotations, called an 'asymmetric unit', contains all the 
interior points of ~ but not all the points on its surface. 
The number, n, of equivalent rotations is the same for 
each class represented by a point in the interior, but is 
often lower for classes represented by a surface point. 

1. Equivalent rotations and disorientations 

The relative orientation of two congruent crystal 
lattices, 1 and 2, can be described by different 
rotations. If R is a rotation that maps lattice 1 onto 
lattice 2, we can carry out a symmetry rotation of 
lattice 1 before and a symmetry rotation of lattice 2 
afterwards, and we can exchange the roles of lattices 1 
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and 2. R and R' are therefore called hexagonalIy (or 
tetragonally, . . . )  equivalent if the hexagonal (or 
tetragonal . . . .  ) holohedry contains two rotations S and 
T such that 

R ' = S R T  or R ' = S R - 1 T .  (1) 

This definition thus generalizes the cubic equivalence 
introduced by Grimmer (1974). Let N be the number of 
symmetry rotations of the lattice. We show in the 
Appendix that the number, n, of different equivalent 
rotations is always a multiple of N and a factor of 2N 2. 
Therefore, we can write n as 

n=2N2/M,  (2) 

where M is a factor of 2N. Table 1 lists the possible 
values of M. 

We shall see later that there exist equivalence classes 
with n -- 2N ElM different rotations for all the values of 
M in Table 1 except those between brackets; for 
example, there are hexagonal equivalence classes with 
288, 144, 72, 36, 24, and 12 different rotations. M = l, 
i.e. n = 2N 2 for most equivalence classes whereas, for 
the class consisting of the symmetry rotations, M has 
the maximum value, i.e. M = 2N and n = N. 

For each holohedry we shall define a 'standard 
stereographic triangle' (SST), which comprises 1/2N of 
the full solid angle. For each rotation angle that occurs 
in an equivalence class, this class contains at least one 
rotation with this angle that acts in the positive sense 
around an axis in (the interior or on the boundary of) 
the SST. The minimum-angle rotations in the positive 
sense around an axis in the SST are called 
disorientations. 

To picture the sets of disorientations for the different 
holohedries (Figs. 2, 5, 7), we shall use the following 
representation of the set of rotations: with each rotation 
we associate a point, the radius vector of which 
corresponds in direction to axis and sense and in length 
to the angle 0 of the rotation. In this way we obtain a 
one-to-one correspondence between rotations with 
angles less than 180 ° and points in the interior of a full 
solid sphere, and between rotations with angle 180 ° 

Table 1. The number, N, of rotations in the holohedry, 
the maximum number, 2 N  2, of equivalent rotations and 

the factors, M, of 2N 

Except for the values of M within brackets there exist equivalence 
classes with n = 2N2/M different rotations 

Crystal system 

Triclinic 
Monoclinic 
Orthorhombic 
Rhombohedral 
Tetragonal 
Hexagonal 
Cubic 

N 2 N  2 M 

1 2 12 
2 8 12 4 
4 32 1 2 4 8 
6 72 1 2 (3) 4 6 12 
8 128 1 2 4 8 16 

12 288 1 2 (3) 4 (6) 8 12 24 
24 1152 12(3) 4 6 8 12 16 (24) 48 

and pairs of diametrically opposed points on the 
surface of the sphere. Let ~ be the closed subset of the 
solid sphere that corresponds to the disorientations. 

Consider the point P representing a disorientation 
the angle 0 of which is not maximal, 0 < 0 m, i.e. there 
exist (inequivalent!) disorientations with the same axis 
but larger angle. The number of rotations in the 
corresponding equivalence class is proportional to the 
solid angle under which ~ appears from P. (In the case 
of several equivalent disorientations, we have to take 
the sum of the corresponding solid angles.) For 
example, each equivalence class represented by an 
interior point of ~r contains the maximum number of 
2N 2 equivalent rotations; the equivalence class 
represented by the origin contains 1/2N times the 
maximum number, namely the N symmetry rotations.* 

Our representation of the set of rotations not being 
conformal, the connection between solid angle and 
number of equivalent rotations breaks down for 0 = Ore. 
In Figs. 3, 5 and 7, which show schematically the 
maximum angle surface of the set of disorientations, we 
shall therefore indicate also the number M (M times the 
number of different inequivalent rotations equals 2N2). 

To determine the rotations that are equivalent, we 
shall represent rotations by pairs of quaternions. They 
are defined with respect to an orthogonal coordinate 
system: if ~, r/ and ~ denote the angles between the 
rotation axis and the x, y, and z axes of our orthogonal 
coordinate system, the pair of quaternions that 
corresponds to a rotation with angle 0 is 

+[cos ½0, cos ~ sin ½0, cos r/sin ½0, cos ~ sin ½0 ]. (3) 

This representation has the following advantages. 
(a) Continuity. Neighbouring rotations are always 

described by neighbouring quaternion pairs and vice 
versa. 

(b) Ease of interpretation. Axis and angle of the 
rotation can immediately be read off the quaternion" 
[a, b, c, d] denotes a rotation, the angle of which is given 
by the first component 

0 =  2 arc cos l a l ,  

and the axis by the three remaining components 

(b 2 + c 2 + dE)-l/2(b,c,d) [--(1 - a2)-l/2(b,c,d)]. 

The rotation is right-handed if a _> 0, left-handed if a 
< 0 .  

(c) Convenience of  notation and of multiplying 
rotations. Compared with the usual matrix represen- 
tation of rotations, quaternions are somewhat simpler 

* The number of rotations with 27 = 11 given in Table 1 of 
Warrington (1974) and in Table 2 of Warrington & Boon (1975) 
should be 288 instead of 300. (Notice that 27 = 13, 17, 19, 21 and 
25 correspond to two equivalence classes each.) In each of the cases 
17b, 19b, and 23c of Table II in Warrington (1975), the number of 
equivalent rotations is 144. 
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to write and to multiply: matrix multiplication gets 
replaced by quaternion multiplication. 

[a, b, c, d][a ' ,  b', c', d'] = [aa' - bb' - co' - d d ' ,  

ab' + ba' + ed' - de', ac' - bd'  + ca' + db', 

ad'  + be' - eb' + da' ]. 

(d) Ease o f  recognizing equivalent rotations. We 
shall see that, looking at two quaternion pairs, it is easy 
to decide whether or not they correspond to equivalent 
rotations. 

2. Hexagonal  lattice 

2.1. Hexagonally equivalent quaternions 

We choose the z axis of the orthogonal coordinate 
system parallel to the sixfold symmetry axis and the x 
axis parallel to a twofold symmetry axis of the lattice. 
The group of hexagonal symmetry rotations is 
generated by the 60 ° rotation about the z axis (+[½V/3, 
0, 0, ½]) and the 180 ° rotation about the x axis 
(+[0, 1,0,0]). Computing all the quaternions that are 
hexagonally equivalent to +[a, b,c,d],  we find that they 
are obtained as follows. Let pair 1 be one of the six 
pairs of numbers in Fig. 1 and pair 2 one of the three 
pairs connected by a line to pair 1. As the first 
component of the quaternion, let us choose either the 
inner or the outer number of pair 1. The second 
component is then respectively the inner or the outer 
number of pair 2, the third component the other 
number of pair 2, and the fourth component the other 
number of pair 1, e.g. [~d + v/3a), c, b, ½(a-v/3d)] .  
We obtain in this way 6 x 3 x 2 quaternions that are all 
different if all the 12 numbers in Fig. 1 are different. All 
the quaternions that are hexagonally equivalent to 
[a,b,c,d] are obtained by arbitrary sign changes of the 
components in these 36 quaternions. If the absolute 
values of all the 12 numbers in Fig. 1 are different, then 
none of them will be 0 and we obtain 36 x 16 = 576 
different quaternions, which are all hexagonally equiva- 
lent, and correspond to 288 hexagonally equivalent 
rotations. 

2.2. Db~orientations 

As a representative of the equivalence class, let us 
choose a quaternion all the components of which are 

d c 

a b 

½ (c-',ffb) ½ ( b 4 ~ c ) ~ / & { C a - , ~ d )  {(d-~a) 

½(a-C~d) {(b-v~c) 
½ (d.eTa) ½(c.,-~b) 

Fig. 1. The components of hexagonally equivalent quaternions. 

non-negative and with first component equal to the 
largest among the absolute values of the 12 numbers in 
Fig. 1. Let us call one of these quaternions 

[a, fl, 7, 5]. (4) 
Two other such quaternions are 

[., ½(b'+ vSy), ½ vS/  (5) 
and 

[a, ½1,8- ~ 7  I, ½(7+ k/3,8), 5]. (6) 
b > V/3c is satisfied by (4) if fl _> V/37, by (5) if fl < 
V/37, but never by (6). We may therefore require our 
representative to satisfy 

a >_- 

b > V/3c > 0 
> 0  

½(a + V/~_d) i.e. a >_ x /~d  
{ l a -  v '3dl [<{(a + v/3d)] 
{(d + v/3a)  i.e. a >_ (2 + ~/~)d (7) 
{ I d -  V/~3al [<½(d + v/3a)] 
½(b + V'3C) (_<b) 
½1b- V(_:3cl [<½(b + V/3c)] 
½(c + V 2b) 
½1e-v ' 3b l  [<½(c + v/3b)] 

i.e. 

b >_ v/3c >_ O 

a > 1-}(V/~b + c) (8) 
!..(2 + vS)d  _ o. 

Our choice in (8) of a quaternion with first component 
as large as possible and with the other three compo- 
nents satisfying certain restrictions corresponds to 
choosing a rotation with minimum rotation angle and 
rotation axis in a certain stereographic triangle, which 
we shall call the standard stereographic triangle (SST). 
Such rotations will be called disorientations. 

Although (8) does depend on our choice of an 
orthogonal coordinate system, Fig. 2 no longer depends 

i 

I 

92"0°~ ~,90 ° 
9 0" II~===-~j to 

Fig. 2. The set of disorientations, i.e. of rotations defined by (8). 
Each rotation is hexagonaUy equivalent to a rotation in this set. 
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Table 2. Connection between equivalent disorientations 

Disorientations with 8 = 0 m are equivalent if they lie symmetrically with respect to one of the planes determined by the pairs of directions 
given in column 1 ; column 2 shows how the equivalent disorientations are connected by symmetry rotations. 

Pair of directions 

[2 + V/3, 1, 1] and [1,0,0] 

[2 + V/3, 1, 1] and [V ~ ,  1, Ol 

[2 + X/'3, 1, 11 and [0,0,11 

Connection between equivalent disorientations 

+ [0,0,0,1] [a,a,c,dl [0,0,1,0] = + [a,a,d,c] 
+ [0,½,-½X/~,01 [a, b, 2a - x/~b, d]10,0,0,1l 

= + [a, ½(v/3a + d), ½(a - v/3d), 2b - v~a] 
+ [0,½V~,½,0] [a, b, c, (2 - V/3)a] [0,1,0,01 

= + [a, ½(v~b + c),½(b- V~C), ( 2 -  V/3) a] 

[ a,b,O,, 

-v~)al 

ia,a,( 

la.~a. ½a, 0] 

Fig. 3. The maximum angle surface of the set of disorientations. 
Equivalent disorientations are connected by arrows. A number M 
indicates that there are 288/M rotations (576/M quaternions) in 
the equivalence class. 

Fig. 4. The hatched areas indicate the reduced rotations in the 
maximum angle surface of the set of disorientations. 

on it because we did not indicate the position of the x, 
y, and z axes in this figure. [Without changing our 
choice of an orthogonal coordinate system we could 
have chosen, instead of (8), other restrictions cor- 
responding to a set congruent to the one shown in Fig. 
2 but lying in another of  the 24 stereographic triangles 
into which the sphere is divided by the mirror planes of 
the hexagonal holohedry.] 

2.3. Reduced rotations 

Consider a disorientation with /9 < 0m. The cor- 
responding quaternion with positive first component 
satisfies (8) with a > instead of a >. It follows that this 
disorientation is the only one in its equivalence class. 
However, if 0 = Om there may be several equivalent 
disorientations. The situation is illustrated in Fig. 3, 
which shows schematically the maximum angle surface 
of the set of disorientations. 

Table 2 shows how equivalent disorientations are 
connected by symmetry rotations. 

We conclude from Fig. 3 that we arrive at a unique 
representative of each equivalence class, if we supple- 
ment (8) as follows: 

if a = b ,  then c > d ;  

if a=½(v~b+c) ,  then ½ ( b - v / 3 c ) > d ;  

if a = ( 2 + V / 3 ) d ,  then b > ( 2 + V / 3 ) c .  

(9) 

The rotations that correspond to quaternions satisfying 
(8), (9) will be called reduced rotations. Each disorien- 
tation with 0 < 0m is a reduced rotation, the 
disorientations with 0 = 0,n that are reduced rotations 
are shown in Fig. 4. 

3. Non-hexagonal lattices 

With a method analogous to that used for the 
hexagonal lattice, results were derived also for the 
lattices of other symmetry.  The tetragonal and ortho- 
rhombic cases turned out to be most similar to the 
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Table  3. Cho&e of  an orthogonal coordinate system, equivalent quaternions and definition o f  the disorientations 
for  orthogonal, tetragonal and cubic holohedry 

Holohedry 

Choice of 
z axis parallel to 
x axis parallel to 

Equivalent quaternions are 
obtained by arbitrary sign 
changes of the four components 
in the quaternions 
obtained from 

Conditions for disorientation 

Orthorhombic Tetragonal Cubic 

twofold axis fourfold axis fourfold axis 
twofold axis twofold axis fourfold axis 

[ a,b,c,d ] [ a,b,c,d ] [ a,b,c,d ] 
by the 2-V2[a + d, b + c, b - c, a - d] 2-1/2[a + b, a - b, c + d, c - d] 
permutations by the permutations 2 -1/2 [a + c, a - c, b + d, b - d] 

(1) (1) 2-1/2[a + d , a - d , b  + c ,b-c]  
(12) (34) (12) (34) ½[a + b + c + d, a + b - c - d, 
(13) (24) (13) (24) a - b + c - d, a - b - c + d] 
(14) (23) (14) (23) ½[a + b + c - d, a + b - c + d, 
(i.e. (14) a - b + c + d, a - b - c - d] 
[a,b,c,d] (23) 
[b,a,d,e] (1342) by all 24 permutations 
[c,d,a,b] (1243) 
[d,c,b,a]) 

tb>_O [b>c>_O [ (V"2 + 1)b 
a>_lc>_O a>_ 2-¥2(b+c) a>-~b+c+d 

td_>0 / (,v/2 + 1)d_>0 b>_c>_d>_O 

Table  4. Connection between equivalent disorientations 

Disorientations with 0 = 0m are equivalent if they lie symmetrically with respect to one of the planes determined by the pairs of directions 
given in column 2, column 3 shows how the equivalent disorientations are connected by symmetry rotations. 

Holohedry Pair of directions 

Orthorhombic [1,1,11 and [ 1,0,0] 
[1,1,1] and [0,1,0] 
[1,1,11 and [0,0,11 

Tetragonal [V'~2 + 1, 1, 11 and [1,0,01 
[X/2 + 1, 1, 1] and [1,1,0] 

[V/2 + 1, 1, II and [0,0,1l 

Cubic [1, 1, V / 2 -  I] and [1,0,0] 

Connection between equivalent disorientations 

+ [0,0,0,1] [a,a,c,d] [0,0,1,0] = + [a,a,d,c] 
+ [0,1,0,0] [a,b,a,d] [0,0,0,1 ] = + [a,d,a,b] 
+ [0,0,1,0] [a,b,c,a] [0,1,0,0] = + [a,c,b,a] 
+ [0,0,0,I] [a,a,c,d] [0,0,1z_0] = + [a,a,d,c] 
_ 2-'/2[0,1,-1,0] ta, b, v/2a - b, d] I0,0,0~l ] 

= _+ [a, 2-U2(a + d), 2-1/2(a - d), v~2b - a] 
+ 2-1/210,1,1,01 ta, b, c, (V ~ - 1)al [0,1,~0l 

= + [a, 2-V2(b + c), 2-x/2(b - c), (V/2 - 1)a] 

+ 2-1/210,0,1,1] la, (V/2 - 1)a, e, d] [0,0,1,0] 
= + [a, (V/-2 - 1)a, 2-U2(c + d), 2-I/2(c - d)] 

h e x a g o n a l  one.  The  cubic  case,  w h i c h  has  been  
desc r ibed  by  G r i m m e r  (1974),  is i nc luded  here  for 
c o m p a r i s o n .  

3.1. Orthorhombic, tetragonal and cubic lattices 

The  results  for o r t hogona l ,  t e t r agona l  and  cubic  holo-  
h e d r y  are s h o w n  in Table  3. 

Fig. 5 tells us that ,  as in the  h e x a g o n a l  case,  
d i sor ien ta t ions  can  also in the  o r t h o r h o m b i c ,  tetra-  
gona l  and  cubic  cases  be equ iva len t  only  if 0 - -  On, i.e. 
if t hey  lie in the  m a x i m u m  angle surface.  Table  4 shows  
h o w  the  equ iva len t  d i sor ien ta t ions  are c o n n e c t e d  by 
s y m m e t r y  ro ta t ions .  

W e  obta in  a un ique  r e d u c e d  ro ta t ion  if we  supple-  
m e n t  the  cond i t i ons  for d i sor ien ta t ions  (Table  3) by  the  
cond i t ions  given in Fig. 6. 

3.2. Triclinic, monoclinic and rhombohedral lattices 

The  results  for triclinic, monoc l in i c  and  r h o m b o -  
hedra l  h o l o h e d r y  are s h o w n  in Table  5. 

Fig. 7 shows  tha t  in con t ra s t  to the  p rev ious  cases  
there  are n o w  equ iva len t  d i sor ien ta t ions  tha t  do  no t  lie 

in the  m a x i m u m  angle surface.  In the  triclinic sys t em 
they  lie in the  p lane  separa t ing  the  ro ta t ions  tha t  are  
d i sor ien ta t ions  f rom those  tha t  are not ,  for wh ich  we  
chose  the  p lane  z - - 0 .  The  ro ta t ions  in this p lane  cons is t  
o f  pairs  o f  equ iva len t  d i sor ien ta t ions  lying s y m m e t r i c a l l y  
with respect  to the  origin. The  two ro ta t ions  o f  each  
pair  are c o n n e c t e d  by R E = R1-1. 

In the  monoc l in i c  and  r h o m b o h e d r a l  sys t ems  equiva-  
lent  d i so r ien ta t ions  in the  m a x i m u m  angle  surface  are 
c o n n e c t e d  by 90 ° ro ta t ions  abou t  the  twofo ld  axis. 
This  c o n n e c t i o n  can  be expressed  with s y m m e t r y  
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rotations as R 2 = R~-XSx . Finally, consider the plane 
normal to the threefold axis in the rhombohedral  case, 
a plane containing the twofold axis in the monoclinic 
case, for which we chose the plane z = 0. Equivalent 
disorientations in these planes lie symmetrically with 

respect to the twofold axis and are connected by 
symmetry rotations as follows: 

R 2 = SxR1Sx, 

i.e. +[0,  1, O, O][a,b,c, O][O, 1 ,0 ,0 ]  = +[a ,b , -c ,  O]. 

The set of 
disorientations 

The maximum-angle surface of 
the set of disorientations 

{e,O,O.e] [e,O,e,e] [e,O..e,O] 
Orthorhombic l~~1,  f j . e ~ ~ ~  f ,e h / ; 8  

[ e , e , 0 , 0 ] ~  

Tetragonal 16 I 

[e, f, g,G/~-l)e] 

[e, f, O,(]/"Z-1)e] 
I 

[e, e, 
9 4 " 5 0 ~  9 ~ . ~ / -  [e' e'0'0/~-l)e] 

~=--~--94.5 o [e. e, h, g] 

le,e,0,01( 

[e, 0,0,(i/2"- 1)el 

f f ~V~-l)e ] 

Cubic 1 2 ~ r ,  r] 

[(V'2+1 )r, r, ~ 2 ~ r  ' r, r,(]f2"-1) r] 

[(]f2"+l)r, r, s+t -t (y~-*l)r, r, r,O] 

[(~/2.1)r, r, 0.01111~-~[~+1)r, r, sO]  

Fig. 5. Disorientations for orthorhombic, tetragonal and cubic holohedry. 



We obtain a unique reduced rotation if we supple- 
ment the conditions for disorientations (Table 5) by the 
conditions given in Fig. 8. 

Holohedry Orthorhombic Tetragonal Cubic 

I f a = b ,  thenc>_d l f a = b ,  thcnc>d Ira =(V~ + l)b, 
Supplementary l f a = c ,  thenb>_d l f v ' ~ a = b + c ,  t h e n b - c > v ~ d  then c -<(V~ + l)d 
conditions I f a = d ,  thenb>_c lfa =(V/2 + lM, thenb _>(Vf2 + l)c 

R ucy 
rotations in ""'" % 
the maximum 
angle surface 

Fig. 6. Reduced rotations for orthorhombic, tetragonal and cubic 
holohedr~;. The hatched areas indicate the reduced rotations in 
the maximum angle surface of the set of  disorientations. 

The set of 
disorientations 

Holohcdry 

Supplementary If d = O, then 
conditions c > O, or 

(c = 0 and b >-0). 

Triclinic Monoclinic Rhombohedral 

If a = b and d > O, l f  a = b and d > O, 
then c > O. then c > O. 
I f d = O ,  t h e n c > O ,  l f d = O ,  thenc>-O. 

rotations in ,-" 
the maximum i 
angle surface i' 

. .  

Reduced 
rotations in 
the surface 
'z = O' " ,  ,£. 

Fig. 8. Reduced rotations for triclinic, monoclinic, and rhombo- 
hedral holohedry. The hatched areas indicate the reduced 
rotations in the maximum angle and the 'z = 0' surfaces of the set 
of  disorientations. 

1800 

Surfaces containing equivalent disorientations 
maximum rotation angle z = 0 

Triclinic 
180 ° 

800 

180 ° 

[0 

~ l O . s , t , O  l 

180 ° 

Monoclinic 
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I / [s,s 

[ /~t ' t- t  0] }/2 1 ~  
' ' ' [s,s,-t,O] I s  

t,0io0j tro,oJ 

, [~u,0,0,u] 0 maximal an 
in the middle 

[C~2 ,t,u ] [I,0, 
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.= indicated 
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Fig. 7. Disorientations for triclinic, monoclinic and rhombohedral holohedry. 
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Table 5. Choice o f  an orthogonal coordinate system, equivalent quaternions and definition o f  the disorientations 
for  triclinic, monoclinic and rhombohedral holohedry 

Holohedry Triclinic Monoclinic Rhombohedral 

Choice of 
z axis parallel to threefold axis 
x axis parallel to twofold axis twofold axis 

Equivalent quaternions are obtained by arbitrarily combining the following transformations 
Arbitrary sign changes in 1 1, 2 1, 2 

components 

Simultaneous sign changes in 2, 3 and 4 3 and 4 3 and 4 
components 

The following permutation 
combined with a sign change 
applied to 

Conditions for disorientation 

abc d~ 
ba_ d - c ]  

[a,b,c,d] [a,b,c,d] 

a>_O a > b > O  
d>O d>O 

c d c) 
[a,b,c,d] 
la, ~(b + V~C), ½(-c + V/~_b), dl 
[a, ½(b - ~3c),  ½(-c - _v~b), d] 
[b, ½(a + V/~_3d), ½(d - V/~_3a), c] 
[b, ½(a - )/"3d), ½(d + V/~a), c] 
½Ia + v73d, b V7_3 , d -  
½[a -- ~_3d, b V/~_3c, c ~ b ,  d + ~ 3 a ]  
½[a + V/~d, b V~_3c, c x/~b, d V/3a] 
½ta -- v/3d, b V/3c, c v/-3a, d + k/C3a] 

>/l ,  __ 

I should like to thank Dr D. H. Warrington for 
stimulating discussions and Dr W. Petter for his 
suggestions for improving the Introduction. 

A P P E N D I X  

The aim of this Appendix is to prove that the number of 
different equivalent rotations is a multiple of the 
number, N, of symmetry rotations of the lattice and a 
factor of 2N 2. 

We saw that if R is a rotation that maps a lattice 1 
onto a congruent lattice 2, the relative orientation of 
these two lattices can be described also by the rotation 
that we obtain by preceding R with a symmetry 
rotation of lattice 1 and following it with a symmetry 
rotation of lattice 2, and by exchanging the roles of 
lattices 1 and 2. Mathematically speaking, we associ- 
ate with each crystal system a group 4 of auto- 
morphisms of the three-dimensional rotation group 
SO 3. The automorphism {S,U,T} ~ 4 acts as follows 
on SO 3: 

{S,U,T}R = S U(R) T, 

where S and T are elements of the group ~ of 
symmetry rotations of the lattice and U is either U+ or 
U_ defined by U+(R) = R and U_(R) = R -1. Two 

rotations, R and R', have been called equivalent if there 
exists an element g ~ 4 such that R' = g(R). 4 has 
2N 2 elements, where N denotes the number of elements 
in ~ .  The elements of 4 that leave a chosen rotation R 
invariant form a subgroup 4 '  of 4 .  Let M be the 
number of elements in 4 ' .  The number of rotations 
equivalent to R is thus 

n = 2N2/M. 

From the fact that for each choice of U, T and R the N 
rotations {S, U, T}R with S ~ ~ are different, it follows 
that 2N2/M is a multiple of N, which completes the 
proof. 
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